Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

P. Gall and P. Gougeon*

Unité Sciences Chimiques de Rennes, UMR CNRS No. 6226, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes Cedex, France

Correspondence e-mail:
patrick.gougeon@univ-rennes1.fr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{Mn}-\mathrm{o})=0.003 \AA$
Disorder in main residue
R factor $=0.033$
$w R$ factor $=0.076$
Data-to-parameter ratio $=32.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Redetermination of $\mathrm{Mn}_{1.44} \mathrm{Mo}_{8} \mathrm{O}_{11}$: evidence of pairwise distortion of octahedral molybdenum chains

Redetermination of the structure of manganese octamolybdenum undecaoxide, $\mathrm{Mn}_{1.44} \mathrm{Mo}_{8} \mathrm{O}_{11}$, revealed a doubling of the unit cell. The structure consists of infinite chains of trans-edge-sharing Mo_{6} octahedra cross-linked through O atoms to delimit tunnels in which the disordered Mn^{2+} cations reside. In comparison with the previous refinement [Carlson et al. (1989). J. Less Common Met. 156, 325-339], the metallic chains exhibit a pairwise distortion, as expected from theoretical calculations.

Comment

Since the first report of infinite chains of trans-edge-sharing Mo_{6} octahedra in $\mathrm{NaMo}_{4} \mathrm{O}_{6}$ by Torardi \& McCarley (1979), four other structure types containing similar molybdenum chains have been discovered: $\mathrm{Sc}_{0.75} \mathrm{Zn}_{1.25} \mathrm{Mo}_{4} \mathrm{O}_{7}$ (McCarley, 1982), $\mathrm{Mn}_{1.5} \mathrm{Mo}_{8} \mathrm{O}_{11}$ (Carlson et al., 1989), $\mathrm{MMo}_{8} \mathrm{O}_{10}(M=\mathrm{Li}$, $\mathrm{Zn})\left(\right.$ Lii et al., 1986) and $R E_{4} \mathrm{Mo}_{4} \mathrm{O}_{11}(R E=\mathrm{Nd}-\mathrm{Lu})$ (Gall et al., 2002). An important difference between the Mo_{6} octahedral chains present in the above compounds is the number of electrons available for Mo-Mo bonding [i.e. metal cluster electrons (MCE)], which governs the geometry of the chains. While they are regular in $\mathrm{NaMo}_{4} \mathrm{O}_{6}$ with 13 electrons per Mo_{4} formula unit, they distort for MCEs greater than 13, as observed in $\mathrm{Sc}_{0.75} \mathrm{Zn}_{1.25} \mathrm{Mo}_{4} \mathrm{O}_{7}$ and $\mathrm{Ho}_{4} \mathrm{Mo}_{4} \mathrm{O}_{11}$. Extended Hückel theory calculations on $\mathrm{NaMo}_{4} \mathrm{O}_{6}$, performed by Hughbanks \& Hoffmann (1983), show that systems with MCEs greater than 13 per Mo_{4} formula unit should distort because of the occupation of antibonding bands. Among the above compounds, $\mathrm{Mn}_{1.5} \mathrm{Mo}_{8} \mathrm{O}_{11}$, although having 14.5 elec-

The crystal structure of $\mathrm{Mn}_{1.44} \mathrm{Mo}_{8} \mathrm{O}_{11}$, viewed down the a axis, parallel to the direction of the chain direction. Displacement ellipsoids are drawn at the 97% probability level.

Received 2 June 2006
Accepted 15 June 2006
trons per Mo_{4} formula unit, was reported to contain regular Mo_{6} octahedral chains. As a consequence, we decided to redetermine the crystal structure of $\mathrm{Mn}_{1.5} \mathrm{Mo}_{8} \mathrm{O}_{11}$ (Carlson et al., 1989).

Our investigation shows that $\mathrm{Mn}_{1.5} \mathrm{Mo}_{8} \mathrm{O}_{11}$ crystallizes in a larger unit cell with the lattice parameter of the axis parallel to the infinite chains doubled. It is interesting to note that Carlson et al. (1989) mentioned superstructure reflections that induce, at least, a quadrupling of this axis. In our case, we only observed a doubling and a quadrupling (see Experimental refinement section). A view of the crystal structure down the chain axis is shown in Fig. 1. It consists of infinite chains of Mo_{6} clusters coupled together through O atoms (Carlson et al., 1989). The most obvious point that underlined our study is the distortion of the infinite molybdenum octahedral chains (Fig. 2). The distortion results here from a symmetrical pairing of the apical Mo atoms with respect to the basal plane, accompanied by a long-short pattern of the Mo-Mo distances of the shared edges, analogous to the structures observed in the $R E_{4} \mathrm{Mo}_{4} \mathrm{O}_{11}$ series. In the title compound, the short Mo3-Mo7 and Mo4-Mo8 bond distances between apical Mo atoms are 2.6116 (3) and 2.6073 (3) Å, respectively, while the long ones, which are essentially non-bonding, are 3.0857 (3) and 3.0907 (4) A. The bond distance between the Mo atoms of the shared edge is shorter [Mo1-Mo2 = 2.6544 (4) \AA] when the apical-apical interaction is weaker, and longer $[\mathrm{Mo5}-\mathrm{Mo6}=2.8607$ (4) \AA] when the interaction between apical Mo atoms is stronger. The Mo-O chains delimit tunnels parallel to the a axis in which the Mn^{2+} cations reside. The Mn1 and Mn3 cations are in distorted squarepyramidal environments of O atoms, and the Mn 2 cation is surrounded by four O atoms forming a distorted tetrahedron. The shortest distances between the Mn sites are 1.0587 (15), 2.4041 (14) and 2.3751 (15) Å, which excludes adjacent sites from being occupied simultaneously.

Experimental

Single crystals of $\mathrm{Mn}_{1.44} \mathrm{Mo}_{8} \mathrm{O}_{11}$ were prepared from a mixture of MnO_{2} (Merck, 99\%), MoO_{3} (Cerac, 99.95\%) and Mo (Plansee, 99.9999%) with the nominal composition $\mathrm{Mn}_{1.5} \mathrm{Mo}_{8} \mathrm{O}_{11}$. Before use, Mo powder was reduced under H_{2} flowing gas at 1273 K over a period of 10 h in order to eliminate any trace of oxygen. The initial mixture (ca 5 g) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low Ar pressure using an arc welding system. The charge was heated at a rate of $300 \mathrm{~K} \mathrm{~h}^{-1}$ to 1773 K , held at that temperature for 72 h and then cooled at a rate of $100 \mathrm{~K} \mathrm{~h}^{-1}$ to 1373 K. Finally, the reaction mixture was allowed to cool down in the switched-off furnace. The final product appeared homogeneous, with thin black needles in a black powder.

Crystal data

```
\(\mathrm{Mn}_{1.44} \mathrm{Mo}_{8} \mathrm{O}_{11}\)
\(M_{r}=1022.63\)
Monoclinic, \(P 2_{1} / n\)
\(a=5.6971\) (3) A
\(b=16.9333\) (12) \(\AA\)
\(c=9.8658\) (8) A
\(\beta=94.900\) (6) \({ }^{\circ}\)
\(V=948.28(11) \AA^{3}\)
```


Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\text {min }}=0.181, T_{\text {max }}=0.748$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.076$
$S=1.06$
6614 reflections
206 parameters

Table 1
Selected bond lengths (\AA).

Mo1-O6	2.010 (2)	Mo5-O5 ${ }^{\text {i }}$	2.004 (2)
$\mathrm{Mo} 1-\mathrm{O} 3^{\text {i }}$	2.061 (2)	Mo5-O10 ${ }^{\text {ix }}$	2.068 (2)
$\mathrm{Mo} 1-\mathrm{O} 5^{\text {ii }}$	2.074 (2)	Mo5-O6 ${ }^{\text {i }}$	2.075 (2)
Mo1-O1	2.075 (2)	Mo5-O8 ${ }^{\text {i }}$	2.104 (2)
Mo1-Mo2 ${ }^{\text {iii }}$	2.6544 (4)	Mo5-Mo8	2.7732 (4)
Mo1-Mo8 ${ }^{\text {iii }}$	2.8020 (4)	Mo5-Mo7	2.8009 (4)
Mo1-Mo7 ${ }^{\text {iii }}$	2.8225 (4)	Mo5-Mo6 ${ }^{\text {ii }}$	2.8607 (4)
Mo1-Mo4 ${ }^{\text {iii }}$	2.8244 (4)	Mo6-O12	2.0207 (3)
Mo1-Mo5 ${ }^{\text {iii }}$	2.8393 (3)	Mo6-O9 ${ }^{\text {vi }}$	2.047 (2)
Mo1-Mo5 ${ }^{\text {iv }}$	2.8610 (3)	Mo6-O11 ${ }^{\text {vii }}$	2.089 (3)
$\mathrm{Mo} 1-\mathrm{Mo}^{\text {iv }}$	2.8755 (4)	Mo6-O7	2.1990 (3)
Mo2-O2	2.028 (2)	Mo6-Mo8 ${ }^{\text {vi }}$	2.7130 (4)
$\mathrm{Mo} 2-\mathrm{O} 4{ }^{\text {v }}$	2.087 (2)	Mo6-Mo7 ${ }^{\text {vi }}$	2.7611 (4)
Mo2-O7	2.1025 (3)	Mo7-O9	2.080 (2)
Mo2-O12 ${ }^{\text {ii }}$	2.2845 (3)	Mo7-O2	2.091 (2)
Mo2-Mo8	2.7414 (4)	$\mathrm{Mo7-O8}{ }^{\text {i }}$	2.094 (2)
Mo2-Mo7	2.7758 (4)	Mo7-O1 ${ }^{\text {x }}$	2.097 (2)
Mo2-Mo4	2.8011 (4)	Mo7-O6	2.106 (3)
$\mathrm{Mo} 2-\mathrm{Mo}^{\text {vi }}$	2.8412 (4)	Mo8-O11 ${ }^{\text {v }}$	2.064 (2)
Mo2-Mo6	2.8426 (3)	Mo8-O10 ${ }^{\text {ix }}$	2.072 (2)
Mo2-Mo6 ${ }^{\text {ii }}$	2.8589 (3)	Mo8-O4 ${ }^{\text {v }}$	2.086 (2)
Mo3-O9	2.066 (2)	$\mathrm{Mo} 8-\mathrm{O} 3^{\text {ix }}$	2.113 (2)
Mo3-O8 ${ }^{\text {i }}$	2.079 (2)	Mo8-O10 ${ }^{\text {v }}$	2.171 (2)
$\mathrm{Mo} 3-\mathrm{O} 5^{\text {ii }}$	2.079 (2)	Mo8-Mo8 ${ }^{\text {xi }}$	3.0739 (6)
$\mathrm{Mo} 3-\mathrm{O} 2^{\text {ii }}$	2.093 (2)	Mn1-O8	2.039 (3)
$\mathrm{Mo3}-\mathrm{O} 1^{\text {i }}$	2.100 (2)	$\mathrm{Mn} 1-\mathrm{O} 2$	2.091 (3)
Mo3-Mo7	2.6116 (3)	Mn1-O11	2.136 (3)
Mo3-Mo6 ${ }^{\text {ii }}$	2.7138 (4)	$\mathrm{Mn} 1-\mathrm{O} 4^{\text {vi }}$	2.203 (3)
Mo3-Mo5	2.7409 (4)	$\mathrm{Mn} 1-\mathrm{O} 9^{\text {vi }}$	2.346 (2)
Mo3-Mo7 ${ }^{\text {ii }}$	3.0857 (3)	$\mathrm{Mn} 2-\mathrm{O} 4^{\text {vi }}$	2.018 (3)
Mo4-O11 ${ }^{\text {vii }}$	2.055 (2)	$\mathrm{Mn} 2-\mathrm{O} 9^{\text {vi }}$	2.030 (3)
$\mathrm{Mo4-O10}{ }^{\text {viii }}$	2.074 (2)	$\mathrm{Mn} 2-\mathrm{O} 1^{\text {vi }}$	2.058 (3)
$\mathrm{Mo} 4-\mathrm{O} 3^{\text {ix }}$	2.093 (2)	Mn2-O8	2.219 (2)
Mo4-O4 ${ }^{\text {v }}$	2.099 (2)	Mn3-O11	2.126 (3)
Mo4-O3 ${ }^{\text {vii }}$	2.165 (2)	Mn3-O1	2.151 (3)
Mo4-Mo8 ${ }^{\text {vi }}$	2.6073 (3)	$\mathrm{Mn} 3-\mathrm{O} 2$	2.186 (3)
Mo4-Mo6	2.6935 (4)	Mn3-O9	2.281 (2)
Mo4-Mo5 ${ }^{\text {vi }}$	2.7132 (4)	Mn3-O8	2.328 (2)
Mo4-Mo8	3.0907 (4)		

Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $x-1, y, z$; (iii) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (iv) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (v) $-x-1,-y,-z+1$; (vi) $x+1, y, z$; (vii) $-x,-y,-z+1$; (viii) $x+1, y, z+1$; (ix) $x, y, z+1$; (x) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2} ;$ (xi) $-x-1,-y,-z+2$.

Several crystals were tested. Although most of them were of poor quality, two kinds of crystals were found. The first type had unit-cell parameters similar to those of the title compound, while the second type had a larger unit cell with $a^{\prime}=2 a, b^{\prime}=b$ and $c^{\prime}=2 c(a, b, c$ being the unit-cell parameters of the title compound). However, the structure of the latter type of crystals could not be determined. The occupation factors for the Mn atoms in the title compound were refined freely, leading to the final stoichiometry $\mathrm{Mn}_{1.440(8)} \mathrm{Mo}_{8} \mathrm{O}_{11}$.

The highest peak and the deepest hole in the final difference Fourier map are located $1.50 \AA$ and $0.60 \AA$, respectively, from Mo2.

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.

Intensity data were collected on the Nonius KappaCCD X-ray diffactometer system of the 'Centre de diffractométrie de l'Université de Rennes I' (URL: www.cdifx.univ-rennes1. fr).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Brandenburg, K. (2001). DIAMOND. Version. 2.1e. Crystal Impact GbR, Bonn, Germany.
Carlson, C. D., Brough, L. F., Edwards, P. A. \& McCarley, R. E. (1989). J. Less Common Met. 156, 325-339.
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. \& Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.

Gall, P., Barrier, N., Gautier, R. \& Gougeon, P. (2002). Inorg. Chem. 41, 28792885.

Hughbanks, T. \& Hoffmann, R. (1983). J. Am. Chem. Soc. 105, 3528-3537.
Lii, K. H., McCarley, R. E., Kim, S. \& Jacobson, R. A. (1986). J. Solid State Chem. 64, 347-358.

Figure 2
A section of one molybdenum oxide cluster chain. The repeat unit comprises two Mo_{6} octahedra. The probability level of the ellipsoids is the same as in Fig. 1 and the symmetry codes are as in Table 1, except for symmetry operator (xii) $-2-x,-y, 1-z$.

McCarley, R. E. (1982). Philos. Trans. R. Soc. London Ser. A, 308, 141-157. Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Torardi, C. C. \& McCarley, R. E. (1979). J. Am. Chem. Soc. 101, 3963-, 3964. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Sheldrick, G. M. (2004). SADABS. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.

[^0]: © 2006 International Union of Crystallography All rights reserved

